Bloomberg Tax Management
Tax Memorandum™

Reproduced with permission from Tax Management Memorandum. Copyright ® 2026 by Bloomberg Industry Group, Inc. (800-372-1033)
http://www.bloombergindustry.com

January 23, 2026

Al Reshapes Software R&D Tax Credits, Eligibility Landscape
Ajay Wanchoo and Hogan Humphries*
KPMG US

Al’s integration into software development challenges traditional R&D tax credit criteria, necessitating new

frameworks for eligibility.

As artificial intelligence and generative Al tools become increasingly integrated into software development,
questions are emerging about how these technologies impact eligibility for the research and development tax
credit under §41 of the Internal Revenue Code. Developers are now using innovative approaches such as “vibe
coding” and “agentic coding” that allow them to generate and refine code using natural language,

fundamentally reshaping the software development process and required skillsets.

While the regulatory landscape currently lacks clear guidance or precedent on these practices, this article

explores how the adoption of Al aligns with the four core criteria for R&D tax credit qualification.

By examining each test—Permitted Purpose, Technological in Nature, Elimination of Uncertainty, and Process
of Experimentation—the article provides insight into how evolving methodologies may affect R&D eligibility

and highlights the need for updated frameworks to address the rapidly changing environment.

* Ajay Wanchoo is a senior managing director in the Accounting Methods and Credit Services practice in
NYC. Hogan Humphries is a managing director in the Washington National Tax Methods group.

The information in this article is not intended to be “written advice concerning one or more Federal tax
matters” subject to the requirements of section 10.37(a)(2) of Treasury Department Circular 230. The
information contained herein is of a general nature and based on authorities that are subject to change.
Applicability of the information to specific situations should be determined through consultation with your tax
adviser. This article represents the views of the authors only, and does not necessarily represent the views or
professional advice of KPMG LLP.


http://www.bloombergindustry.com/
https://kpmg.com/us/en/how-we-work/people/w/wanchoo-ajay.html
https://kpmg.com/us/en/how-we-work/people/h/humphries-hogan.html
https://go.bloombergtax.com/product/tax/document/XOFILG18

Four Tests

Software developers are developing new skillsets, and the new techniques are changing the nature of the
software development lifecycle. This is a quickly changing landscape and there currently is no guidance or
case law addressing the topic. How the use of Al fits into the four criteria that must be satisfied for activities to
qualify for the R&D tax credit is an evolving question under the traditional framework that applies — consider

the four tests.

Permitted Purpose Test. This test requires that the research be undertaken to create a new or improved
business component in terms of its function, performance, reliability, or quality. The introduction of Al doesn’t
change the goal, which is still to improve a product, process, technique, formula, invention, or computer
software. For instance, if a team uses an Al tool to develop a more efficient database, does it change purpose—
that of improving the performance and reliability of that business component? The use of Al is a change in

methodology, not a change in intent.

“Technological in Nature” Test. This test requires the research to be fundamentally based on principles of
engineering, computer science, or the physical or biological sciences. One could ask if a developer prompting
an Al in plain English is still performing a technological activity. Could it be argued that the developer’s role is
evolving from a hands-on coder to a systems thinker and a director of the Al, focusing on higher-level
technological pursuits such as architectural design, complex algorithm development, and performance
optimization? In this view, the human is the dominant actor, using the Al as merely an advanced tool to apply

principles of computer science.

Elimination of Uncertainty Test. This test requires that the research be intended to discover information that
would eliminate uncertainty concerning the capability of or method for developing or improving a business
component, or the appropriate design of that new or improved business component. Does Al, with its vast
knowledge base, eliminate this uncertainty? An alternative view is that Al reframes it. The uncertainty may
shift from the micro-level task of writing a piece of code to the macro-level challenge of engineering a reliable
system. For example, instead of struggling with the correct syntax for a database query, the developer now
faces the uncertainty of which of three viable, Al-generated microservice architectures will scale most

effectively under unpredictable user loads.

Process of Experimentation Test. This test requires a process of evaluating one or more alternatives to
achieve a result. With Al, this process arguably becomes more significant, not less. The developer, acting as a
lead investigator, can now use Al to rapidly generate multiple viable alternatives that must be systematically
tested, validated, refined, and potentially discarded. The experimentation moves from the slow manual process

of coding each alternative to the more complex and cognitive process of designing the tests, evaluating the

2



AT’s output, and making critical design trade-offs. The very act of testing multiple Al-generated approaches

could in itself be viewed as a core process of experimentation.

A spectrum of usage patterns is emerging in how Al is leveraged for supporting the creation of software
solutions. These can vary between merely accepting Al-generated code and a more rigorous, hands-on model,
where the engineer retains full ownership and responsibility and hence the human is the dominant actor
actioning the research process—in the real world, some hybrid or variations of these are being adopted to
varying degrees. This new paradigm demands skills in problem decomposition, critical review, advanced
simulation, and systems-level thinking. The disciplined, human-led, Gen Al supported approach, with its

emphasis on rigorous review and advanced testing, may strengthen the case for R&D eligibility.
Viewing a Bug as a Failed Scientific Experiment

In the Al-assisted paradigm, one may see an extraordinary rise in the number of bugs being reported during the
development process. In the new Gen Al-assisted software development lifecycle, would it make more sense to
consider that one is not just “fixing a bug,” but rather documenting the failure of a hypothesis? In this
framework, the bug is the proof that the initial hypothesis—that the Al-generated code will work—was false.
The debugging and testing process then becomes the new, qualified experiment. A relevant analogy may be

found in material-world engineering.
Analogy: The Automotive Crash Test.

o The initial hypothesis: A team of automotive engineers uses a sophisticated computer simulation (the
Al) to design a new chassis. Their hypothesis is: “This computer-generated design will be safe in a 40-
mph frontal collision.”

e The experiment: They build a physical prototype and subject it to a real-world crash test (the software
integration and load test).

e The discovery (the bug): Upon impact, the A-pillar buckles in a way the simulation didn’t predict.
This isn’t a simple “bug"; it is the formal disproof of the initial hypothesis. It is the discovery that the
computer’s generalized model was technologically insufficient for the complex, real-world physics of
the crash.

e The new, qualified experiment (the debugging process): The team doesn’t simply “fix the dent.”
They begin a new process of experimentation: analyzing high-speed camera footage, taking
metallurgical samples, and forming new hypotheses, such as “Is the material too brittle?”. They then
build and test new iterations until a design is validated. This iterative cycle of analysis, redesign, and
retesting would then be the core research activity.



Just as the automotive engineers’ work shifted from the initial design to the complex process of physical
testing and reinforcement, the software developer’s work shifts from the initial Al prompt to the complex
process of integration testing, debugging, and architectural refactoring required to make the AI’s output robust
in a real-world system. By framing documentation around this concept, one may argue that the iterative
“prompt-select-refine-test-debug” loop is transformed from a series of routine tasks into a clear and compelling

narrative of scientific experimentation.
Evolving Documentation: Capturing the New Research Process

In the new high-velocity development lifecycles, the documentation supporting the qualification of software
development activities is becoming more challenging but also more important. Substantiating the process of

experimentation needs to continue to evolve along with the tools, including highlighting the following:

e Focus on the system: Document the challenges of building and maintaining a high-velocity
development system.

o Evidence of a systematic testing process: The process of experimentation is now heavily weighted
toward the iterative cycles of creating or composing design alternatives, refining or selecting a design
option to test, designing the test, testing, debugging, and validation, framed by the “bug as a failed
experiment” paradigm.

e Highlight the human’s role: Emphasize that the developer is the “dominant actor,” guiding the Al and

making critical design decisions based on experimental results.

Traditional metrics like lines of code are becoming less indicative of true research activity. The focus must

shift to capturing the Process of Experimentation and the Cognitive Effort of the developer:

Deeper analysis of existing artifacts (Jira, Git, Pull/Merge requests). Analysis of the “content and context”

of development artifacts including code, or wireframes, or ER diagrams, etc. will be needed. This includes:

o Reviewing Jira tickets now potentially having a much higher percentage of “bugs” some of which may
need to be viewed as failed experiment logs
e Analyzing pull/merge requests for the technical debates that validate an approach, and

e Valuing Git commit messages for their explanation of why a change was made.

If the nature of the work is changing, then how should the methods for documenting that work evolve to

capture the new process of experimentation?

Capturing the cognitive process of experimentation. To demonstrate the human-led discovery process, new

forms of documentation might require consideration. For instance, an architectural decision record
4



(ADR) could document not just the final choice, but also the Al-generated alternatives that were discarded and
the technical reasons why. A relevant example could be an ADR for a caching strategy that states: “Evaluated
three Al-suggested approaches. Centralized Redis was discarded due to simulated bottleneck concerns. Client-
side replication was chosen, though it requires a custom test harness to validate its logic.” This captures the

evaluation of alternatives.

Highlighting the role of testing and bug-fixing. If a bug is a failed experiment, then its documentation should
be treated with the same rigor. One could ask if a bug ticket in Jira could be reframed as a failed experiment
log. For example, instead of a title like “Bug: Page crashes,” the new title could be “Failed Experiment: Al-
generated concurrency model causes deadlock.” The description would then detail the initial hypothesis (the Al
code would work), the method of discovery (the load test that caused the failure), and the resulting technical

uncertainty that must now be resolved. This turns a simple bug report into a rich narrative of scientific inquiry.

Re-contextualizing existing artifacts. Even new forms of documentation, such as prompt iteration logs and

ADRs are needed to make the developer’s thought process visible and auditable.

Adopt traditional artifacts like pull or merge requests can be viewed through this new lens. The discussion
within a pull request may be a critical indicator of research, as it’s where the collaborative, human-led review
and validation of an AI’s output occurs. A comment such as, “The Al used a recursive pattern here, which is
clever, but have we tested for stack overflow with deeply nested data structures before we merge?” is strong

evidence of due diligence and the identification of new uncertainties.

Considering new metrics indicative of cognitive effort. Should we consider adopting new metrics that reflect
this experimental process? Instead of just lines of code, perhaps tracking the code churn rate within a
developer’s feature branch could be more indicative. A high churn rate may suggest that the developer is
actively experimenting, iterating with the Al, and discarding failed approaches rather than passively accepting
the first output. Similarly, a rising ratio of test code to production code could signal a greater focus on the

qualified activity of validating complex, Al-generated systems.
Takeaways

The shift to Gen Al-assisted development actively redefines the human developer’s role—transforming them
from a straightforward coder into a systems architect and lead scientific investigator. Developers now direct

experiments, validate outcomes, and engineer resilient, scalable systems that drive high-velocity innovation.

Today, the core of research activity is not simply coding, but strategically designing, testing, and managing

these sophisticated R&D processes. By adopting advanced testing methodologies and rigorously documenting

5



each step—treating every bug as a discovery and every test as an experiment—organizations can clearly

demonstrate the human ingenuity and experimental rigor behind their Al-driven breakthroughs.

Practitioners can help companies operationalize these recommendations by advising on implementing robust
documentation practices, establishing metrics that capture cognitive effort, and aligning development processes
with the evolving requirements of the R&D tax credit. By partnering with practitioners, organizations can
confidently substantiate their claims and help ensure that their investment in Gen Al innovation receives the

recognition and support it deserves.

This article does not necessarily reflect the opinion of Bloomberg Industry Group, Inc., the publisher of

Bloomberg Law, Bloomberg Tax, and Bloomberg Government, or its owners.

6






